Improved bidirectional echo state network-based time series reconstruction and prediction for structural response

Author:

Tan Yan-Ke123ORCID,Wang Yu-Ling12,Ni Yi-Qing12ORCID,Zhang Qi-Lin3,Wang You-Wu12ORCID

Affiliation:

1. Department of Civil and Environment Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

2. National Rail Transit Electrification and Automation Engineering Technology Research Center (Hong Kong Branch), The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

3. College of Civil Engineering, Tongji University, Shanghai, China

Abstract

The integrity of the data collected by structural health monitoring systems has a significant impact on structural damage detection and state assessment. The missing or abnormal segments and unacquired future segments can be supplemented through signal reconstruction and prediction models. This paper proposes two novel models toward these two tasks based on bidirectional echo state network, which can exploit both historical and future signal segments to improve accuracies. Adaptive combination coefficient is introduced to control the rate of error accumulation. The effectiveness and robustness of the proposed models are verified by cases of synchronized missing, long-term missing, and boundary effect. A hyperparameter study related to both reservoir and memory is conducted to generate optimal models with maximum processing abilities. An ARIMAX and improved Kalman filter-based preprocessing method is adopted to keep all useful information and provide optimal estimation of the true signal values. The proposed models also show high performance in generating the high-frequency components. The superiority of the proposed models is validated through the datasets measured from Canton Tower, both stationary signals under free vibration and non-stationary signals under earthquake being considered.

Funder

Innovation and Technology Commission of the Hong Kong SAR Government

Research Grants Council of the Hong Kong Special Administrative Region (SAR), China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3