An acoustic emission onset time determination method based on Transformer

Author:

Yang Zhensheng1ORCID,Li Haoda2ORCID,Chen Runtu1

Affiliation:

1. School of Logistics Engineering, Shanghai Maritime University, Shanghai, PR China

2. COSCO Shipping Heavy Industry (Dalian) Co., Ltd., Dalian, PR China

Abstract

Acoustic emission (AE) technology, as the main method of non-destructive testing technology, has been widely used in structural health monitoring (known as SHM) in the fields of machinery and civil engineering. Locating the failure source is an important application of SHM, and accurately identifying the moment when the AE signal first reaches the sensor (which is called onset time) is of vital importance. Deep learning model has been widely used in onset time determination of AE signals in recent years due to its powerful feature extraction ability. However, as one of the most popular models, Transformer has not been further studied in such field and its effectiveness remains to be proven. In this paper, a novel AE onset time determination method based on Transformer is proposed. Firstly, a preprocessing method based on segmentation-concatenation is applied to divide original data into several connected small segments, while the integrating labeling method is applied on small label segments. Secondly, the preprocessed data and labels are substituted into the Transformer model for training. Finally, for the sequence processed by the Transformer model, the first-time index that reaches the maximum value is obtained as the determination result. Based on the Hsu-Nielson source AE data, the feasibility and performance of this method are analyzed and compared with several commonly used methods: Akaike information criterion (AIC), short/long term average combined with AIC (STA/LTA-AIC), floating threshold (FT) and 1D-CNN-AIC method. The results show that the proposed method is significantly better than AIC, STA/LTA-AIC and FT. Moreover, the determination efficiency is greatly improved while the performance of the proposed method is close to that of 1D-CNN-AIC. Meanwhile, the method has robust performance especially in low signal-to-noise ratio scenario. In practical applications with small-scale data, the proposed method is of relatively high reference as well as application value.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3