Direct-write piezoelectric coating transducers in combination with discrete ceramic transducer and laser pulse excitation for ultrasonic impact damage detection on composite plates

Author:

Philibert Marilyne12ORCID,Chen Shuting1,Wong Voon-Kean1ORCID,Liew Weng Heng1,Yao Kui1ORCID,Soutis Constantinos23,Gresil Matthieu4

Affiliation:

1. Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore

2. Department of Materials, The University of Manchester, Manchester, UK

3. Aerospace Research Institute, The University of Manchester, Manchester, UK

4. i-Composites Lab, Department of Materials Science and Engineering & Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia

Abstract

In this work, direct-write piezoelectric transducers (DWTs) were made by spraying piezoelectric poly(vinylidene fluoride-co-trifluoroethylene) coating with comb-shaped electrodes on carbon fibre reinforced polymer (CFRP) plates for drop weight impact damage detection. Their ability and performance were investigated and compared to discrete piezoelectric lead zirconate titanate (PZT) ceramic transducers that were adhesively bonded on the same CFRP plate. Guided wave signals were acquired with different combinations of actuator-sensor involving DWT, PZT and laser ultrasonic excitation, in pitch-catch configuration. DWTs allowed consistency and simplified signal interpretation due to an effective mode selection (A0 or S0 mode) with wavelengths of 10 and 12 mm. PZTs generated stronger but much more complex signals and mode selection with a larger wavelength (20 mm). The configuration with PZT as actuator and DWT as receiver showed the highest signal amplitude changes of A0 or S0 mode, allowing efficient detection of damage introduced by a 31 J impact. Further ultrasonic B- and C-scans revealed a 27 mm long crack on the plate’s backside developed in addition to internal cracks and delaminations of about 34 mm in length. For realizing contactless ultrasound excitation, a neodymium-doped yttrium aluminium garnet laser (wavelength of 1064 nm, 5.4 ns pulses) was used to replace the surface-mounted brittle PZT. The combination of the broadband laser excitation with the DWTs as sensors achieved more reliable damage detection than equivalent PZTs, attributed to DWT’s effective single mode selection. In addition to reduced weight, the polymeric coated DWTs allow large area implementation (scaling up), even on curved surfaces due to their flexibility and conformability, in contrast to adhesively bonded discrete transducers.

Funder

Agency for Science, Technology and Research

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3