Affiliation:
1. Code 6340, Naval Research Laboratory, Washington, DC 20375 USA
2. Code 5673, Naval Research Laboratory, Washington, DC 20375 USA
3. Department of Structural Engineering, University of California, San Diego, La Jolla, CA 92093-0085, USA
4. Weapons Response Group (ESA-WR) Los Alamos National Laboratory, MS T006, Los Alamos, NM 87545, USA
Abstract
Recent works by Nichols et al. (Nichols, J.M., Todd, M.D., Seaver, M. and Virgin, L.N. (2003). Use of chaotic excitation and attractor property analysis in structural health monitoring. Phys Rev E, 67(016209)) and Pecora et al. (Todd, M.D., Nichols, J.M., Pecora, L.M. and Virgin, L.N. (2001). Vibration-based damage assessment utilizing state-space geometry changes: Local attractor variance ratio. Smart Materials and Structures, 10, 1000-1008.) have shown that steady-state dynamic analysis of structural health exhibits advantages over transient vibrational analysis. A geometric representation of system dynamics can be used to extract information about a structure’s response to sustained excitation. Analysis of various features of the geometric representation can be used to describe the degree to which the dynamics have been altered by damage. Here, the feature we employ is the ‘‘continuity test,’’ a statistical test first described by Pecora et al. (Pecora, L.M., Carroll, T.L. and Heagy, J.F. (1997). Statistics for continuity and differentiability: an application to attractor reconstruction from time-series. Fields Institute Communications, 11). This test measures the probability that a continuous function exists from one geometric object to another. In this implementation, we formulate a new null hypothesis which serves to make the test less sensitive to noise in the data than the original test. Using experimental data from an excited three-story aluminum frame structure with multiple sensors at the joints, we show that the continuity test can be used not only to detect, but also in some cases to localize damage to particular joints in the frame structure.
Subject
Mechanical Engineering,Biophysics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献