A machine learning approach for the automatic long-term structural health monitoring

Author:

Demarie Giacomo Vincenzo1ORCID,Sabia Donato2ORCID

Affiliation:

1. Structural Engineer, Torino, Italy

2. Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Torino, Italy

Abstract

Measuring the response of a structure to the ambient and service loads is a source of information that can be used to estimate some important engineering parameters or, to a certain extent, to characterize the structural behavior as a whole. By repeating the data acquisition over a period of time, it is possible to check for variations in the structure’s response, which may be correlated to the appearance or growth of a damage (e.g. following some exceptional event as the earthquake, or as a consequence of materials and components aging). The complexity of some existing structures and their environment very often requires the execution of a monitoring plan in order to support analyses and decisions through the evidence of measured data. If the monitoring is implemented through a sensor network continuously acquiring over time, then the evolution of the structural behavior may be tracked continuously as well. Such approach has become a viable option for practical applications since the last decade, as a consequence of the progress in the data acquisition and storage systems. However, proper methods and algorithms are needed for managing the large amount of data and the extraction of valuable knowledge from it. This article presents a methodology aimed at making automatic the process of structural monitoring in case it is carried continuously over time. It relies on some existing methods from the machine learning and data mining fields, which are casted into a process targeted to delimit the need of the human being intervention to the training phase and the engineering judgment of the results. The methodology has been successfully applied to the real-world case of an ancient masonry bell tower, the Ghirlandina Tower (Modena, Italy), where a network made of 12 accelerometers and 3 thermocouples has been acquiring continuously since August 2012. The structural characterization is performed by identifying the first modes of vibration, whose evolution over time has been tracked.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3