Health condition identification for rolling bearing based on hierarchical multiscale symbolic dynamic entropy and least squares support tensor machine–based binary tree

Author:

Yang Cheng1ORCID,Jia Minping1

Affiliation:

1. School of Mechanical Engineering, Southeast University, Nanjing, People’s Republic of China

Abstract

Bearing health condition identification plays a crucial role in guaranteeing maximum productivity and reducing maintenance costs. In this article, a novel tensorial feature extraction approach called hierarchical multiscale symbolic dynamic entropy is developed, which can be used to assess the dynamic characteristic of the measured vibration data at different hierarchical layers and different scales. Besides, the influence of parameters in hierarchical multiscale symbolic dynamic entropy is investigated so as to select the optimal parameters. Then, a new multi-fault classifier called least squares support tensor machine–based binary tree is presented to achieve the fault identification automatically. In the least squares support tensor machine–based binary tree method, the divisibility measure strategy is constructed by two new separability measures (i.e. the average center distance of samples in one class, the center distance of samples between sub-class and global class). Finally, a novel intelligent fault diagnosis scheme based on hierarchical multiscale symbolic dynamic entropy and least squares support tensor machine–based binary tree is developed, which is applied to analyze the experimental data of rolling bearing. The results indicate that the proposed scheme has a superior performance in health condition identification. Compared with the existing symbolic dynamic entropy–based fault diagnosis methods, the proposed method has higher diagnostic accuracy and better stability.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3