Particle filter-based fatigue damage prognosis by fusing multiple degradation models

Author:

Li Tianzhi1ORCID,Chen Jian2ORCID,Yuan Shenfang2ORCID,Zarouchas Dimitrios3,Sbarufatti Claudio1,Cadini Francesco1

Affiliation:

1. Dipartimento di Meccanica, Politecnico di Milano, Milan, Italy

2. Research Center of Structural Health Monitoring and Prognosis, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China

3. Center of Excellence in Artificial Intelligence for Structures, Prognostics & Health Management, Aerospace Engineering Faculty, Delft University of Technology, Delft, The Netherlands

Abstract

Fatigue damage prognosis always requires a degradation model describing the damage evolution with time; thus, the prognostic performance highly depends on the selection of such a model. The best model should probably be case specific, calling for the fusion of multiple degradation models for a robust prognosis. In this context, this paper proposes a scheme of online fusing multiple models in a particle filter (PF)-based damage prognosis framework. First, each prognostic model has its process equation built through a physics-based or data-driven degradation model and has its measurement equation linking the damage state and the measurement. Second, each model is independently processed through one PF to provide one group of particles. Then, the particles from all models are adopted for remaining useful life prediction. Finally, the particles from each PF are fused with those from all the other PFs to improve their particle diversity, and consequently, to provide better estimation and prognostic performance. The feasibility and robustness of the proposed method are validated by an experimental study, where an aluminum lug structure subject to fatigue crack growth is monitored by a guided wave measurement system.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3