Fault parameter identification in rotating system: Comparison between deterministic and stochastic approaches

Author:

Garoli Gabriel Yuji1ORCID,Alves Diogo Stuani1ORCID,Machado Tiago Henrique1ORCID,Cavalca Katia Lucchesi1ORCID,de Castro Helio Fiori1ORCID

Affiliation:

1. School of Mechanical Engineering, University of Campinas, Campinas, Brazil

Abstract

Fault identification is a recurrent topic in rotating machines field. The evaluation of fault parameters allows better maintenance of such expensive and, sometimes, large machines. Unbalance is one of the most common faults, and it is inherent to rotors functioning. Wear in journal bearings is another common fault, caused by several start/stop cycles – when at low rotating speed, there is still contact between shaft and bearing wall. Fault parameter identification generally uses deterministic model–based methods. However, these methods do not take into account the uncertainties inherently involved in the identification process. The stochastic approach by the Bayesian inference is, then, used to account the uncertainties of the fault parameters. The generalized polynomial chaos expansion is proposed to evaluate the inference, due to its faster performance regarding the Markov chain Monte Carlo methods. Deterministic and stochastic approaches were compared; all were based on experimental vibration measurements of the shaft inside the journal bearings. The Bayesian inference with the polynomial chaos showed reliable and promising results for identification of unbalance and bearing wear fault parameters.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3