Affiliation:
1. Institute of Advanced Digital Technologies and Instrumentation, Zhejiang University, Hangzhou, China
2. Institute of Modern Manufacture Engineering, Zhejiang University, Hangzhou, China
Abstract
Switch rails are weak but essential components of high-speed railway systems that have urgent nondestructive testing requirements owing to aging and the associated potential for fatigue damage accumulation. This study presents a multi-feature integration and automatic classification algorithm for switch rail damage using guided wave monitoring signals. A combination of piezoelectric transducers and magnetostrictive patch transducers is adopted to improve the monitoring performance and meet actual monitoring requirements. Furthermore, multiple features extracted from various signal processing domains—such as the time domain, power spectrum domain, and time–frequency domain—are proposed and defined according to the structure and characteristics of the switch rail and guided wave to represent the complex nature of the damage. A damage index is defined to eliminate the influence of various environmental and operational conditions, signal power, and other factors. In addition, a feature selection method based on binary particle swarm optimization with a new fitness function is proposed to select the most damage-sensitive features and eliminate irrelevant and redundant features to improve the classification performance. Moreover, considering that the results are easily influenced by experts’ subjective judgment and experience, the least-squares support-vector machine is used to construct automatic classification models to reduce the probability of artificial incorrect diagnosis and improve the generalization ability to unknown environments. Finally, three types of experiments on the foot of a switch rail are presented to evaluate the proposed method. The results indicate that the proposed method is capable of identifying damage in challenging cases and is superior to conventional methods.
Funder
China Postdoctoral Science Foundation
Technique Plans of Zhejiang Province
National Natural Science Foundation of China
Subject
Mechanical Engineering,Biophysics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献