A new dam structural response estimation paradigm powered by deep learning and transfer learning techniques

Author:

Li Yangtao12ORCID,Bao Tengfei123ORCID,Gao Zhixin12,Shu Xiaosong12,Zhang Kang12,Xie Lunchen4,Zhang Zhentao5

Affiliation:

1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China

2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, China

3. College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, China

4. School of Software Engineering, Tongji University, Shanghai, China

5. School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China

Abstract

With the rapid development of information and communication techniques, dam structural health assessment based on data collected from structural health monitoring systems has become a trend. This allows for applying data-driven methods for dam safety analysis. However, data-driven models in most related literature are statistical and shallow machine learning models, which cannot capture the time series patterns or learn from long-term dependencies of dam structural response time series. Furthermore, the effectiveness and applicability of these models are only validated in a small data set and part of monitoring points in a dam structural health monitoring system. To address the problems, this article proposes a new modeling paradigm based on various deep learning and transfer learning techniques. The paradigm utilizes one-dimensional convolutional neural networks to extract the inherent features from dam structural response–related environmental quantity monitoring data. Then bidirectional gated recurrent unit with a self-attention mechanism is used to learn from long-term dependencies, and transfer learning is utilized to transfer knowledge learned from the typical monitoring point to the others. The proposed paradigm integrates the powerful modeling capability of deep learning networks and the flexible transferability of transfer learning. Rather than traditional models that rely on experience for feature selection, the proposed deep learning–based paradigm directly utilizes environmental monitoring time series as inputs to accurately estimate dam structural response changes. A high arch dam in long-term service is selected as the case study, and three monitoring items, including dam displacement, crack opening displacement, and seepage are used as the research objects. The experimental results show that the proposed paradigm outperforms conventional and shallow machine learning–based methods in all 41 tested monitoring points, which indicates that the proposed paradigm is capable of dealing with dam structural response estimation with high accuracy and robustness.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3