Structural damage identification based on self-fitting ARMAX model and multi-sensor data fusion

Author:

Ay Ali M1,Wang Ying1

Affiliation:

1. School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, VIC, Australia

Abstract

Statistical time series methods have proven to be a promising technique in structural health monitoring, since it provides a direct form of data analysis and eliminates the requirement for domain transformation. Latest research in structural health monitoring presents a number of statistical models that have been successfully used to construct quantified models of vibration response signals. Although a majority of these studies present viable results, the aspects of practical implementation, statistical model construction and decision-making procedures are often vaguely defined or omitted from presented work. In this article, a comprehensive methodology is developed, which essentially utilizes an auto-regressive moving average with exogenous input model to create quantified model estimates of experimentally acquired response signals. An iterative self-fitting algorithm is proposed to construct and fit the auto-regressive moving average with exogenous input model, which is capable of integrally finding an optimum set of auto-regressive moving average with exogenous input model parameters. After creating a dataset of quantified response signals, an unlabelled response signal can be identified according to a ‘closest-fit’ available in the dataset. A unique averaging method is proposed and implemented for multi-sensor data fusion to decrease the margin of error with sensors, thus increasing the reliability of global damage identification. To demonstrate the effectiveness of the developed methodology, a steel frame structure subjected to various bolt-connection damage scenarios is tested. Damage identification results from the experimental study suggest that the proposed methodology can be employed as an efficient and functional damage identification tool.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Reference29 articles.

1. Assessment of vibration-based damage identification techniques

2. Vibration-based structural health monitoring using output-only measurements under changing environment

3. Rytter A. Vibrational Based Inspection of Civil Engineering Structures. Aalborg: Department of Building Technology and Structural Engineering, Aalborg University, 1993. 193 p. (Fracture and Dynamics; No. 44, Vol. R9314).

4. Vibration–based structural damage identification

5. Vibration-based Damage Identification Methods: A Review and Comparative Study

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3