Deep learning–based autonomous concrete crack evaluation through hybrid image scanning

Author:

Jang Keunyoung1,Kim Namgyu2,An Yun-Kyu1

Affiliation:

1. Department of Architectural Engineering, Sejong University, Seoul, South Korea

2. Department of Civil and Environmental Engineering, Sejong University, Seoul, South Korea

Abstract

This article proposes a deep learning–based autonomous concrete crack detection technique using hybrid images. The hybrid images combining vision and infrared thermography images are able to improve crack detectability while minimizing false alarms. In particular, large-scale concrete-made infrastructures such as bridge and dam can be effectively inspected by spatially scanning the unmanned vehicle–mounted hybrid imaging system including a vision camera, an infrared camera, and a continuous-wave line laser. However, the expert-dependent decision-making for crack identification which has been widely used in industrial fields is often cumbersome, time-consuming, and unreliable. As a target concrete structure gets larger, automated decision-making becomes more desirable from the practical point of view. The proposed technique is able to achieve automated crack identification and visualization by transfer learning of a well-trained deep convolutional neural network, that is, GoogLeNet, while retaining the advantages of the hybrid images. The proposed technique is experimentally validated using a lab-scale concrete specimen with cracks of various sizes. The test results reveal that macro- and microcracks are automatically visualized while minimizing false alarms.

Funder

Ministry of Science, ICT and Future Planning

Ministry of Land, Infrastructure and Transport

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3