Simulation data driven weakly supervised adversarial domain adaptation approach for intelligent cross-machine fault diagnosis

Author:

Yu Kun1,Fu Qiang1,Ma Hui12ORCID,Lin Tian Ran3ORCID,Li Xiang24ORCID

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, P.R. China

2. Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang, P.R. China

3. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, P.R. China

4. College of Sciences, Northeastern University, Shenyang, P.R. China

Abstract

In current research works, a number of intelligent fault diagnosis methods have been proposed with the assistance of domain adaptation approach, which attempt to distinguish the health modes for target domain data using the diagnostic knowledge learned from source domain data. An important assumption for these methods is that the label information for the source domain data should be known in advance. However, the high-quality condition monitoring data with sufficient label information is difficult to be acquired in the actual field, which can greatly hinder the effectiveness of domain adaptation–based fault diagnosis methods. The simulation model of the rotating machine is an effective approach to provide an insight into the characteristics of the mechanical equipment, which can also easily carry the sufficient label information for the mechanical equipment under various operating conditions. In this study, a simulation data–driven domain adaptation approach is proposed for the intelligent fault diagnosis of mechanical equipment. The simulation data from a rotor-bearing system are used to build the source domain data set, and the diagnostic knowledge learned from the simulation data is used to realize the healthy mode identification of mechanical equipment in the actual field. The proposed domain adaption approach consists of two parts. The first part is to achieve the conditional distribution alignment between source domain data and target domain supervised data in an alternative way. The second part is to achieve the marginal distribution alignment between source domain data and target domain unsupervised data in an adversarial training process. The proposed domain adaptation method is evaluated on two case studies, the diagnostic results on two case studies indicate that the proposed domain adaptation method is capable of realizing the fault diagnosis of mechanical equipment using the diagnostic knowledge learned from simulation data.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3