Smart thin-film piezoelectric composite sensors based on high lead zirconate titanate content

Author:

Saber Nasser1,Meng Qingshi1,Hsu Hung-Yao1,Lee Sang-Heon1,Kuan Hsu-Chiang2,Marney Donavan3,Kawashima Nobuyuki4,Ma Jun1

Affiliation:

1. School of Engineering, University of South Australia, Mawson Lakes, SA, Australia

2. Department of Energy Application Engineering, Far East University, Tainan, Taiwan

3. Division of Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, VIC, Australia

4. Mawson Institute, University of South Australia, Mawson Lakes, SA, Australia

Abstract

Piezoelectric composites are hybrid materials primarily consisting of polymer matrices and micro-sized particles of ferroelectric ceramic. While incorporating high-fraction ceramic particles into composites is indispensable to meet the ever increasing requirement of sensitivity, it is a great challenge to achieve such a high concentration due to processing difficulties. In this study, we developed piezoelectric composites of 0-3 geometry containing 95 wt% (∼73 vol%) lead zirconate titanate particles by modifying the surface of lead zirconate titanate particles with isophorone diisocyanate and polyoxyalkyleneamine (J2000) and compounding them with epoxy resin. The functional groups of J2000 molecules covalently grafted onto the particle surface can react with the matrix, thus creating a robust linkage between the matrix and the particles. This improved the particle dispersion and the interface, enabling the development of a superior composite film with high lead zirconate titanate fractions. Modified piezocomposites can save up to 75% poling time at 75% lower voltage in comparison with the unmodified sample as well as previous studies. The remarkable improvement is indebted to the two-stage interface modification process and the layer-by-layer fabrication method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3