Interpretable convolutional sparse coding method of Lamb waves for damage identification and localization

Author:

Zhang Han1ORCID,Lin Jing2ORCID,Hua Jiadong23ORCID,Tong Tong1

Affiliation:

1. School of Reliability and Systems Engineering, Beihang University, Beijing, China

2. Science & Technology on Reliability and Environmental Engineering Laboratory, Beihang University, Beijing, China

3. Beijing Advanced Discipline Center for Unmanned Aircraft System, Beihang University, Beijing, China

Abstract

Lamb wave-based damage identification and localization methods hold the potential for nondestructive evaluation and structural health monitoring. Dispersive and multimodal characteristics lead to complicated Lamb wave signals that are challenging to be analyzed. Deep learning architectures could identify damage-related features effectively. Convolutional neural network (CNN) is a promising architecture that has been widely applied in recent years. However, this data-driven approach still lacks a certain degree of physical interpretability and requires a large number of parameters. In this article, an interpretable Lamb wave convolutional sparse coding (LW-CSC) method is proposed for structural damage identification and localization. First, toneburst signals at different center frequencies are considered in the first convolutional layer. The network convolves the waveforms with a set of parametrized functions that implement band-pass filters, which performs more physical interpretability compared to conventional CNN model. Subsequently, the damage features are extracted according to the multi-layer iterative soft thresholding algorithm for multi-layer CSC model, which could realize a deeper network without adding parameters unlike CNN. Finally, Lamb wave-based damage localization is visualized using an imaging algorithm. The experimental results demonstrate that the proposed method not only enables improvement of the classification accuracy but also achieves structural damage localization accurately.

Funder

National Natural Science Foundation of China

Open Foundation of Henan Key Laboratory of Underwater Intelligent Equipment

Open Foundation of State Key Laboratory of Digital Manufacturing Equipment and Technology

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3