Damage detection and characterization of a scaled model steel truss bridge using combined complete ensemble empirical mode decomposition with adaptive noise and multiple signal classification approach

Author:

Mousavi Asma A1ORCID,Zhang Chunwei1ORCID,Masri Sami F2,Gholipour Gholamreza1

Affiliation:

1. School of Civil Engineering, Qingdao University of Technology, Qingdao, China

2. Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA

Abstract

This study aims to investigate the performance of a new damage detection method proposed based on the combination of two signal processing techniques which are complete ensemble empirical mode decomposition with adaptive noise and multiple signal classification (CEEMDAN-MUSIC). The proposed damage detection approach begins with determining the power density spectrum, namely, the pseudospectrum, from the acceleration response of a structure. Then, the CEEMDAN algorithm is used to decompose the vibration signal into a set of intrinsic mode functions (IMFs). Furthermore, the MUSIC algorithm is applied to the first IMF of the processed signal to determine the frequency pseudospectrum, prior to and post the damage states of the structure. The effectiveness of the proposed methodology is experimentally validated using a laboratory-scale model of a steel truss bridge exposed to a white noise excitation. The damage states of the truss bridge are implemented by replacing a specified diagonal element with reduced cross-sectional stiffness. The experimental results demonstrate the superiority of the CEEMDAN-MUSIC method in comparison with the performance of pure MUSIC and traditional frequency domain techniques. The advantages of the proposed technique are also discussed in terms of identifying the presence of the damage, addressing its location, and quantifying the damage levels which are summarized as the damage detection and characterization.

Funder

Ministry of Science and Technology of China

National Natural Science Foundation of China

Shandong Province

Education Department of Shandong Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3