Comparative evaluation of in situ stress monitoring with Rayleigh waves

Author:

Hughes James Martin1ORCID,Vidler James1,Ng Ching-Tai2ORCID,Khanna Aditya1,Mohabuth Munawwar1,Rose LR Francis3,Kotousov Andrei1

Affiliation:

1. School of Mechanical Engineering, The University of Adelaide, Adelaide, SA, Australia

2. School of Civil, Environmental & Mining Engineering, The University of Adelaide, Adelaide, SA, Australia

3. Aerospace Division, Defence Science and Technology Group, Melbourne, VIC, Australia

Abstract

The in situ monitoring of stresses provides a crucial input for residual life prognosis and is an integral part of structural health monitoring systems. Stress monitoring is generally achieved by utilising the acoustoelastic effect, which relates the speed of elastic waves in a solid, typically longitudinal and shear waves, to the stress state. A major shortcoming of methods based on the acoustoelastic effect is their poor sensitivity. Another shortcoming of acoustoelastic methods is associated with the rapid attenuation of bulk waves in the propagation medium, requiring the use of dense sensor networks. The purpose of this article is twofold: to demonstrate the application of Rayleigh (guided) waves rather than bulk waves towards stress monitoring based on acoustoelasticity, and to propose a new method for stress monitoring based on the rate of accumulation of the second harmonic of large-amplitude Rayleigh waves. An experimental study is conducted using the cross-correlation signal processing technique to increase the accuracy of determining Rayleigh wave speeds when compared with traditional methods. This demonstrates the feasibility of Rayleigh wave–based acoustoelastic structural health monitoring systems, which could easily be integrated with existing sensor networks. Second harmonic generation is then investigated to demonstrate the sensitivity of higher order harmonics to stress-induced nonlinearities. The outcomes of this study demonstrate that the sensitivity of the new second harmonic generation method is several orders of magnitude greater than the acoustoelastic method, making the proposed method more suitable for development for online stress monitoring of in-service structures.

Funder

Australian Research Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3