Optimal sensor placement within a hybrid dense sensor network using an adaptive genetic algorithm with learning gene pool

Author:

Downey Austin1,Hu Chao23,Laflamme Simon13

Affiliation:

1. Department of Civil, Construction, and Environmental Engineering, Iowa State University, USA

2. Department of Mechanical Engineering, Iowa State University, USA

3. Department of Electrical and Computer Engineering, Iowa State University, USA

Abstract

This work develops optimal sensor placement within a hybrid dense sensor network used in the construction of accurate strain maps for large-scale structural components. Realization of accurate strain maps is imperative for improved strain-based fault diagnosis and prognosis health management in large-scale structures. Here, an objective function specifically formulated to reduce type I and II errors and an adaptive mutation-based genetic algorithm for the placement of sensors within the hybrid dense sensor network are introduced. The objective function is based on the linear combination method and validates sensor placement while increasing information entropy. Optimal sensor placement is achieved through a genetic algorithm that leverages the concept that not all potential sensor locations contain the same level of information. The level of information in a potential sensor location is taught to subsequent generations through updating the algorithm’s gene pool. The objective function and genetic algorithm are experimentally validated for a cantilever plate under three loading cases. Results demonstrate the capability of the learning gene pool to effectively and repeatedly find a Pareto-optimal solution faster than its non-adaptive gene pool counterpart.

Funder

National Science Foundation

Iowa Energy Center

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3