Nonparametric nonlinear restoring force and excitation identification with Legendre polynomial model and data fusion

Author:

Xu Bin12ORCID,Zhao Ye1ORCID,Deng Baichuan3,Du Yibang1ORCID,Wang Chen14,Ge Hanbin15

Affiliation:

1. College of Civil Engineering, Huaqiao University, Xiamen, China

2. Key Laboratory for Intelligent Infrastructure and Monitoring of Fujian Province, Huaqiao University, Xiamen, China

3. Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, USA

4. Intelligence and Automation in Construction Fujian Province, Higher-Educational Engineering Research Centre, Huaqiao University, Xiamen, China

5. Department of Civil Engineering, Meijo University, Nagoya, Japan

Abstract

Identification of nonlinear restoring force and dynamic loadings provides critical information for post-event damage diagnosis of structures. Due to high complexity and individuality of structural nonlinearities, it is difficult to provide an exact parametric mathematical model in advance to describe the nonlinear behavior of a structural member or a substructure under strong dynamic loadings in practice. Moreover, external dynamic loading applied to an engineering structure is usually unknown and only acceleration responses at limited degrees of freedom of the structure are available for identification. In this study, a nonparametric nonlinear restoring force and excitation identification approach combining the Legendre polynomial model and extended Kalman filter with unknown input is proposed using limited acceleration measurements fused with limited displacement measurements. Then, the performance of the proposed approach is first illustrated via numerical simulation with multi-degree-of-freedom frame structures equipped with magnetorheological dampers mimicking nonlinearity under direct dynamic excitation or base excitation using noise-polluted measurements. Finally, a dynamic experimental study on a four-story steel frame model equipped with a magnetorheological damper is carried out and dynamic response measurement is employed to validate the effectiveness of the proposed method by comparing the identified dynamic responses, nonlinear restoring force, and excitation force with the test measurements. The convergence and the effect of initial estimation errors of structural parameters on the final identification results are investigated. The effect of data fusion on improving the identification accuracy is also investigated.

Funder

huaqiao university

National Natural Science Foundation of China

ministry of science and technology of the people’s republic of china

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3