Augmented reality for enhanced visual inspection through knowledge-based deep learning

Author:

Wang Shaohan1ORCID,Zargar Sakib Ashraf1ORCID,Yuan Fuh-Gwo1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA

Abstract

A two-stage knowledge-based deep learning algorithm is presented for enabling automated damage detection in real-time using the augmented reality smart glasses. The first stage of the algorithm entails the identification of damage prone zones within the region of interest. This requires domain knowledge about the damage as well as the structure being inspected. In the second stage, automated damage detection is performed independently within each of the identified zones starting with the one that is the most damage prone. For real-time visual inspection enhancement using the augmented reality smart glasses, this two-stage approach not only ensures computational feasibility and efficiency but also significantly improves the probability of detection when dealing with structures with complex geometric features. A pilot study is conducted using hands-free Epson BT-300 smart glasses during which two distinct tasks are performed: First, using a single deep learning model deployed on the augmented reality smart glasses, automatic detection and classification of corrosion/fatigue, which is the most common cause of failure in high-strength materials, is performed. Then, in order to highlight the efficacy of the proposed two-stage approach, the more challenging task of defect detection in a multi-joint bolted region is addressed. The pilot study is conducted without any artificial control of external conditions like acquisition angles, lighting, and so on. While automating the visual inspection process is not a new concept for large-scale structures, in most cases, assessment of the collected data is performed offline. The algorithms/techniques used therein cannot be implemented directly on computationally limited devices such as the hands-free augmented reality glasses which could then be used by inspectors in the field for real-time assistance. The proposed approach serves to overcome this bottleneck.

Funder

National Institute of Aerospace and NASA Langley Research Center

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3