Damage localization with fiber Bragg grating Lamb wave sensing through adaptive phased array imaging

Author:

Tian Zhenhua1,Yu Lingyu1,Sun Xiaoyi1,Lin Bin1

Affiliation:

1. Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

Abstract

Fiber Bragg gratings are known being immune to electromagnetic interference and emerging as Lamb wave sensors for structural health monitoring of plate-like structures. However, their application for damage localization in large areas has been limited by their direction-dependent sensor factor. This article addresses such a challenge and presents a robust damage localization method for fiber Bragg grating Lamb wave sensing through the implementation of adaptive phased array algorithms. A compact linear fiber Bragg grating phased array is configured by uniformly distributing the fiber Bragg grating sensors along a straight line and axially in parallel to each other. The Lamb wave imaging is then performed by phased array algorithms without weighting factors (conventional delay-and-sum) and with adaptive weighting factors (minimum variance). The properties of both imaging algorithms, as well as the effects of fiber Bragg grating’s direction-dependent sensor factor, are characterized, analyzed, and compared in details. The results show that this compact fiber Bragg grating array can precisely locate damage in plates, while the comparisons show that the minimum variance method has a better imaging resolution than that of the delay-and-sum method and is barely affected by fiber Bragg grating’s direction-dependent sensor factor. Laboratory tests are also performed with a four–fiber Bragg grating array to detect simulated defects at different directions. Both delay-and-sum and minimum variance methods can successfully locate defects at different positions, and their results are consistent with analytical predictions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3