Method using singular value decomposition and whale optimization algorithm to quantitatively detect multiple damages in turbine blades

Author:

Jiang Hu1,Jiang Yongying1,Xiang Jiawei1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, Zhejiang, P.R. China

Abstract

Renewable energy has increased in recent years with a consequential increase in equipment maintenance. Maintenance costs can be reduced by structural health monitoring techniques especially for wind turbine (WT) blade damages. However, the majority are not suitable for on-line measurements and quantitative detections. A quantitative damage detection method is developed to identify multiple damages in a WT blade under in-service operation conditions. Firstly, singular value decomposition is applied to reveal singular information in the operating deflection shape (ODS), which can be treated as damage locations. Secondly, whale optimization algorithm is utilized for a damage severity decision about the natural frequency database between damage severities and natural frequencies, which are constructed by finite element method (FEM) simulations on the detected damage locations in the WT blade. The procedure is applied to FEM numerical simulations of a single WT blade with two and three damages. By adding a certain noise to the simulation dataset, the robustness of the present method is validated. Furthermore, the laser scanning vibrometer is employed to test the ODS as well as natural frequencies of WT blades to testify the performance of the multiple damage detection method. Results show that the present method is effective for the detection of multi-damage in WT blades with a certain noise robustness.

Funder

National Natural Science Foundation of China

Zhejiang Natural Science Foundation of China

Wenzhou Major Science and Technology Innovation Project of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3