Reliability of crack quantification via acousto-ultrasound active-sensing structural health monitoring using surface-mounted PZT actuators/sensors

Author:

Yadav Susheel Kumar1,Mishra Spandan1,Kopsaftopoulos Fotis2ORCID,Chang Fu-Kuo3

Affiliation:

1. Acellent Technologies, Inc., Sunnyvale, CA, USA

2. Intelligent Structural Systems Laboratory (ISSL), Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA

3. Structures and Composites Laboratory (SACL), Department of Aeronautics & Astronautics, Stanford University, Stanford, CA, USA

Abstract

This work presents the introduction and experimental investigation of an active-sensing acousto-ultrasound structural health monitoring approach for damage size quantification based on piezoelectric sensors/actuators mounted on multiple seemingly identical structural components. The objective of this work is to determine how reliable the damage diagnostics can be from one component to another similar (nominally identical) component using surface-mounted PZT (lead zirconate titanate) sensors/actuators, and also to evaluate how sensitive a sensor network configuration in terms of the number of sensors/actuators is with respect to its detection reliability. Extensive crack growth experiments on multiple identical coupons outfitted with the same sensor network configuration under cyclic loads were conducted to assess the damage quantification reliability from one coupon to another using the same diagnostic algorithm. The results of the study indicate that the crack size estimates obtained from the active-sensing structural health monitoring system can vary within the population of identical structural components (coupons), but the difference in quantifying damage among coupons decreases with the increase in the number of sensors and actuators used, that is, wave propagation paths. Furthermore, it is shown that the diagnostic results in terms of damage quantification converge with the increase in the number of sensors. The results of the study indicate that the diagnostic approach using a multi-path sensor network can reduce the damage quantification error from one component to another within a “hotspot” configuration (damage location is known or suspected a priori). Finally, the results of this study indicate that the more wave propagation paths used in the diagnostic active-sensing algorithm, the more reliable the damage quantification results are, provided that the same sensor network is used and installed at nominally identical locations for all coupons.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3