Development of data anomaly classification for structural health monitoring based on iterative trimmed loss minimization and human-in-the-loop learning

Author:

Huang Shieh-Kung1ORCID,Lin Tian-Xun1

Affiliation:

1. Department of Civil Engineering, National Chung-Hsing University, Taichung, Taiwan, R.O.C.

Abstract

Huge amounts of data can be generated during long-term monitoring performed by structural health monitoring (SHM) and structural integrity management applications. Monitoring data can be corrupted, and the presence of abnormal data can distort information during signal processing, extract incorrect characteristics during system identification, produce false conclusions during damage detection, and ultimately lead to misjudgment of structural conditions during diagnosis and prognosis. Therefore, developing effective techniques to autonomously detect and classify anomalies becomes necessary and significant. Generally, conventional physics-based strategies can be straightforward, but their performance highly depends on prior knowledge of measurement. Recently, data-driven methods leveraging machine learning (ML) have been used to directly handle the task. This study proposes an ML-based classifier and improves it by incorporating the human-in-the-loop (HITL) learning. The classifier is built on a shallow neural network with high performance to address potential online or real-time applications for long-term monitoring. First, a field monitoring dataset is introduced, and various anomalies are defined to investigate the effectiveness. To further enhance the performance of the proposed classifier, the mislabels in the monitoring dataset are examined, and a correction technique is performed. Additionally, HITL ML is developed to overcome the disadvantages of the conventional correction technique. As a result, the proposed procedure can improve both the classifier and the field dataset, and the proposed classifier can now function as a fundamental component in achieving a continuous and autonomous SHM system.

Funder

National Science and Technology Council

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3