Transmission tower bolt-loosening time–frequency analysis and localization method considering time-varying characteristics

Author:

Zhao Long1ORCID,Wen Guanru1,Wang Jingyao1,Liu Zhicheng1,Huang Xinbo1ORCID

Affiliation:

1. School of Electronics and Information, Xi’an Polytechnic University, Xi’an, China

Abstract

To address the issues of high concealment and difficult positioning of loose bolts in transmission towers, this paper proposes a new method for locating loose bolts in transmission towers. In this method, we divide the vibration response of the transmission tower into low-frequency signals of 2–25 Hz and high-frequency signals of 25–75 Hz. For the low-frequency signals, the single signal component is obtained by adaptive Chirp mode decomposition and uses the general demodulation transformation to deeply denoise the non-modal information. Since frequency characteristics themselves do not contain time information, considering the importance of time information for positioning, we propose a low-frequency time-varying frequency feature that preserves time characteristics based on synchronous wavelet transform and peak search. For the high-frequency signals, we use singular value decomposition to remove signal outliers caused by pulse excitation and eliminate forced vibrations through wavelet packet transform. Without altering its inherent characteristics, this method enables high-frequency time-domain signals to better represent the nonlinear characteristics of transmission towers. Furthermore, based on the powerful capabilities of Timesnet and Transformer in dealing with time series data, we propose a fault diagnosis model, which ultimately achieves the positioning of loose bolts in transmission towers. The bolt node model proves that this approach can better represent the loose bolt characteristics, and the transmission tower model verifies the effectiveness of this approach in locating loose bolts in transmission towers. Finally, bolt-loosening tests were conducted on a 110 kV transmission tower, and the accuracy of the positioning results reached 92.8%, demonstrating the effectiveness and efficiency of this method in practical positioning applications.

Funder

key research and development projects of shaanxi province

the Natural Science Basis Research Plan in Shaanxi Province of China

Graduate Scientific Innovation Fund for Xi’an Polytechnic University

the Research Plan of the Education Department of Shaanxi Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3