A two-step approach to damage localization at supporting structures of offshore wind turbines

Author:

Schröder Karsten1,Gebhardt Cristian Guillermo1,Rolfes Raimund1

Affiliation:

1. Institute of Structural Analysis, Leibniz Universität Hannover, Hannover, Germany

Abstract

This article introduces a new adaptive two-step optimization algorithm for finite element model updating with special emphasis on damage localization at supporting structures of offshore wind turbines. The algorithm comprises an enhanced version of the global optimization algorithm simulated annealing, the simulated quenching method that approximates an initial guess of damage localization. Subsequently, sequential quadratic programming is used to compute the final solution adaptively. For the correlation of numerical model and measurement data, both a measure based on eigenfrequencies and mode shapes and a measure employing time series are implemented and compared with respect to their performance for damage localization. Phase balance of the time signals is achieved using cross-correlation. The localization problem is stated as a minimization problem in which the measures are used in time and modal domain as the objective function subject to constraints. Furthermore, the objective function value of the adjusted model is used to distinguish correct from wrong solutions. The functionality is proven using a numerical model of a monopile structure with simulated damage and a lab-scaled model of a tripile structure with real damage.

Funder

FP7 Research infrastructures

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3