Affiliation:
1. Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC, Australia
2. Department of Infrastructure Engineering, The University of Melbourne, Melbourne, VIC, Australia
Abstract
With the growing number of aging infrastructure across the world, there is a high demand for a more effective inspection method to assess its conditions. Routine assessment of structural conditions is a necessity to ensure the safety and operation of critical infrastructure. However, the current practice to detect structural damages, such as cracks, depends on human visual observation methods, which are prone to efficiency, cost, and safety concerns. In this article, we present an automated detection method, which is based on convolutional neural network models and a non-overlapping window-based approach, to detect crack/non-crack conditions of concrete structures from images. To this end, we construct a data set of crack/non-crack concrete structures, comprising 32,704 training patches, 2074 validation patches, and 6032 test patches. We evaluate the performance of our approach using 15 state-of-the-art convolutional neural network models in terms of number of parameters required to train the models, area under the curve, and inference time. Our approach provides over 95% accuracy and over 87% precision in detecting the cracks for most of the convolutional neural network models. We also show that our approach outperforms existing models in literature in terms of accuracy and inference time. The best performance in terms of area under the curve was achieved by visual geometry group-16 model (area under the curve = 0.9805) and best inference time was provided by AlexNet (0.32 s per image in size of 256 × 256 × 3). Our evaluation shows that deeper convolutional neural network models have higher detection accuracies; however, they also require more parameters and have higher inference time. We believe that this study would act as a benchmark for real-time, automated crack detection for condition assessment of infrastructure.
Funder
CRC-P for Advanced Manufacturing of High Performance Building Envelope
Asia Pacific Research Network for Resilient and Affordable Housing
Subject
Mechanical Engineering,Biophysics
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献