Bayesian data-driven framework for structural health monitoring of composite structures under limited experimental data

Author:

Ferreira Leonardo de Paula S.1ORCID,Teloli Rafael de O.2,da Silva Samuel3ORCID,Figueiredo Eloi45ORCID,Maia Nuno6,Cimini Carlos A.1

Affiliation:

1. UFMG – Universidade Federal de Minas Gerais, Faculdade de Engenharia, Departamento de Engenharia de Estruturas, Belo Horizonte – MG, Brazil

2. Supmicrotech-ENSMM, CNRS, FEMTO-ST, Département Mécanique Appliquée, UBFC - Université de Bourgogne Franche-Comté, Besançon, France

3. UNESP – Universidade Estadual Paulista, Faculdade de Engenharia de Ilha Solteira, Departamento de Engenharia Mecânica, Ilha Solteira, Brazil

4. Faculty of Engineering, Lusófona University, Lisboa, Portugal

5. CERIS, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

6. IDMEC, Instituto Superior Técnico, University of Lisbon, Lisboa, Portugal

Abstract

Ultrasonic-guided waves can be used to monitor the health of thin-walled structures. However, the run of experimental damage tests on materials like carbon fiber-reinforced plastics can be impractical and costly. Instead, numerical models can be used to create hybrid datasets to train machine learning algorithms, integrating data from numerical and experimental tests. This paper presents a Bayesian-driven framework to compensate for limited experimental data regarding Lamb wave propagation in composite plates. Using Bayesian inference, the framework updates a numerical finite element model, considering observed uncertainties by sampling posterior probability density functions for input parameters using Markov–Chain Monte Carlo simulations with the Metropolis-Hastings algorithm. A neural network surrogate model speeds-up these simulations, leading to a model that replicates the uncertain experimental setup. This model then generates data to augment true experimental data. Finally, a one-dimensional convolutional neural network is trained on a three different datasets to analyze Lamb wave signals and assess damage. Comparing training strategies shows the hybrid dataset augmented by samples generated by the updated FE model gives the most accurate damage size predictions.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

FCT Portugal

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3