An iterative method for leakage zone identification in water distribution networks based on machine learning

Author:

Chen Jingyu1,Feng Xin12ORCID,Xiao Shiyun12

Affiliation:

1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, China

2. Key Laboratory for Engineering of Disaster Prevention and Mitigation of Liaoning Province, Dalian University of Technology, Dalian, China

Abstract

For leakage identification in water distribution networks, if each node is used as a category label of the classifier model, the accuracy of the classifier model will be low because of similar leakage characteristics. By clustering the nodes with similar leakage characteristics and using all the possible combinations of leakages as the category labels of the classifier model, the accuracy of the classifier model for leakage location can be improved. An iterative method combining k-means clustering with the random forest classifier is proposed to identify the leakage zones. In each iteration, k-means clustering is used to divide the leakage zone identified in the previous iterations into two zones, and then, the random forest classifier is used to identify the leakage zones and the number of leakages in each leakage zone. As the number of iterations increases, the number of candidate leakage zones and sensors that conduct leakage zone identification decreases. Thus, feature selection can be used in each iteration to select the minimum number of sensors for model training without affecting identification accuracy. Three leakage scenarios are considered: a single leakage, two simultaneous leakages, and four simultaneous leakages. A benchmark case is presented in this study to demonstrate the effectiveness of the proposed method. The influences of the number of pressure sensors and Gaussian noise level on the identification results are also discussed. Results indicate that the proposed method is effective for identifying simultaneous leakages.

Funder

national key research and development program of china stem cell and translational research

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3