Guided wave sensitivity prediction for part and through-thickness crack-like defects

Author:

Fromme Paul1ORCID

Affiliation:

1. Department of Mechanical Engineering, University College London, London, UK

Abstract

Guided waves allow for the efficient structural health monitoring of large structures using phased or distributed arrays of sensors. The sensitivity for specific defects can be improved by accounting for the angular scattering pattern. The scattering of the fundamental anti-symmetric guided wave mode (A0 Lamb mode) at through-thickness and part-through crack-like defects was studied experimentally and from three-dimensional finite element simulations. Experimentally, the scattered field around manufactured notches of different depths and lengths in an aluminium plate was measured using a laser interferometer. The scattered field was extracted by taking the complex difference in the frequency domain between baseline measurement and measurements around the defect. Good agreement was found between measurements and three-dimensional finite element simulations, and the amplitude and directionality pattern of the scattered field can be predicted accurately. The angular directionality pattern of the scattered field depending on the direction of the incident wave relative to the crack-like defect orientation, depth and length relative to the wavelength was investigated. For short and part-thickness defects, the main scattering effect is a reduction of the (forward) wave propagating past the defect with very limited backscattered amplitude. Significant energy scattered back towards the incident wave direction was only found for perpendicular incidence on long and deep defects. Even for large defects, almost no energy is scattered in certain directions from the defect, possibly complicating defect detection. Based on the predicted amplitude and angular dependency of the scattered guided waves, the sensitivity for defect detection using localized and distributed structural health monitoring sensor array systems can be quantified.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3