Damage identification based on response-only measurements using cepstrum analysis and artificial neural networks

Author:

Dackermann Ulrike1,Smith Wade A2,Randall Robert B2

Affiliation:

1. School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology, Sydney, Sydney, NSW, Australia

2. School of Mechanical and Manufacturing Engineering, Faculty of Engineering, The University of New South Wales, Sydney, NSW, Australia

Abstract

This article presents a response-only structural health monitoring technique that utilises cepstrum analysis and artificial neural networks for the identification of damage in civil engineering structures. The method begins by applying cepstrum-based operational modal analysis, which separates source and transmission path effects to determine the structure’s frequency response functions from response measurements only. Principal component analysis is applied to the obtained frequency response functions to reduce the data size, and structural damage is then detected using a two-stage ensemble of artificial neural networks. The proposed method is verified both experimentally and numerically using a laboratory two-storey framed structure and a finite element representation, both subjected to a single excitation. The laboratory structure is tested on a large-scale shake table generating ambient loading of Gaussian distribution. In the numerical investigation, the same input is applied to the finite model, but the obtained responses are polluted with different levels of white Gaussian noise to better replicate real-life conditions. The damage is simulated in the experimental and numerical investigations by changing the condition of individual joint elements from fixed to pinned. In total, four single joint changes are investigated. The results of the investigation show that the proposed method is effective in identifying joint damage in a multi-storey structure based on response-only measurements in the presence of a single input. Because the technique does not require a precise knowledge of the excitation, it has the potential for use in online structural health monitoring. Recommendations are given as to how the method could be applied to the more general multiple-input case.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3