Co-Kriging strategy for structural health monitoring of bridges

Author:

Novais Henrique Cordeiro1ORCID,da Silva Samuel1ORCID,Figueiredo Eloi23ORCID

Affiliation:

1. Departamento de Engenharia Mecnica, UNESP—Universidade Estadual Paulista, Ilha Solteira, SP, Brasil

2. Faculty of Engineering, Lusfona University, Lisboa, Portugal

3. CERIS, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

Abstract

Computational models are crucial in applied science and engineering, offering valuable insights on the behavior of strutures and mechanical systems. However, their effectiveness is often hindered by complexity and substantial time required for execution. Metamodeling, or surrogate modeling, is a practical strategy to optimize computational time and resources. This approach involves substituting a complex model with a metamodel, that is, a simplified function that mimics the behavior of the original model, thereby significantly expediting the evaluation process. One widely utilized method is Gaussian Process Regression (GPR), also known as Kriging, which has demonstrated effectiveness in numerous structural health monitoring (SHM) applications. However, achieving accurate predictions for a target variable (e.g., damage-sensitive feature) often requires a significant amount of past data or well-calibrated models of the structure under analysis, presenting challenges and high costs. Therefore, the innovation presented in this article is applying a co-Kriging method, a multivariate extension of ordinary Kriging that leverages the covariance between two or more related datasets. This is an efficient decision-making process in various fields, especially when the co-variable is more cost-effective to measure than the target variable. Three distinct applications are presented here, showcasing the efficacy of the co-Kriging methodology. Two of these applications focus on generic mathematical functions. The third pertains to a real-world scenario involving the correlation of the natural frequencies of a concrete bridge under varying thermal conditions. Across all three scenarios, co-Kriging emerges as a robust method, consistently yielding superior results compared to ordinary Kriging.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeioamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3