Pitting corrosion prediction based on electromechanical impedance and convolutional neural networks

Author:

Luo Wei1,Liu Tiejun1ORCID,Li Weijie2ORCID,Luo Mingzhang3

Affiliation:

1. School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, China

2. School of Civil Engineering, Dalian University of Technology, Dalian, China

3. Electronics and Information School, Yangtze University, Jingzhou, China

Abstract

Corrosion induced thickness loss in metallic structures is a common and crucial problem in multiple industries. Therefore, it is important to accurately monitor the corrosion amount of the structure. Traditional corrosion monitoring methods are mainly based on electrochemical methods, and most of them are unable to quantify the corrosion amount. In our previous work, a new type of corrosion sensing mechanism based on the electromechanical impedance instrumented circular piezoelectric-metal transducer was proposed, in which the peak frequencies in the conductance signatures decrease linearly with the increase of the corrosion induced thickness loss. However, only the uniform corrosion with even metal thickness decrease was considered in the previous study. In this paper, the capability of the proposed sensing mechanism for the quantification and prediction of pitting corrosion was investigated using one-dimensional convolutional neural networks (1D CNN). Finite element modeling of the pitting corrosion was performed and the probability distribution of the corrosion pits was considered. In the experimental setup, corrosion pits were generated on the corrosion sensor using mechanical drilling. The 1D CNN was adopted to explore the regression relationship between the EMI signatures of the sensor and the mass loss induced by pitting corrosion. The results show that the proposed method has achieved high accuracy in the quantitative prediction of pitting corrosion. This paper lays the technical foundation for real-time and quantitative monitoring of pitting corrosion for metallic structures.

Funder

Fundamental Research Funds for the Central Universities

National Science Fund for Distinguished Young Scholars of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3