Applicability and limitations of time domain reflectometry bridge scour monitoring system in general field conditions

Author:

Wang Kai1ORCID,Lin Chih-Ping1ORCID

Affiliation:

1. Department of Civil Engineering, National Chiao Tung University, Hsinchu

Abstract

A real-time and durable system for scour process monitoring with sufficient spatial precision is in pressing need for bridge safety management. In light of this, an innovative bundled time domain reflectometry sensing cable was recently proposed to enhance the time domain reflectometry technique for scour monitoring. However, current development only dealt with the construction of bundled sensing cable and the corresponding new data reduction method. Before it can be put into practical use, issues related to the effect of hydrological conditions, long-distance measurement, and actual field implementation are yet to be investigated. This study used both numerical simulations and laboratory experiments to examine the time domain reflectometry signals in response to both scour and deposition in different water-level conditions. As a result, the first guideline of waveform classification and interpretation is newly proposed to validly determine scour depth under various field conditions. Since field measurements often come with significant signal attenuation from resistance loss of long cable and dielectric and conductive loss in the sensing section, numerical simulations and a series of full-scale experiments were also conducted to assess the time domain reflectometry scour measurement range. The maximum measurement range of the latest time domain reflectometry scour sensing cable was found to be about 6 m. Within this range, the maximum error of scour estimation is within 0.2 m. Considering the new findings, a field time domain reflectometry scour monitoring system using the bundled time domain reflectometry sensing cable was designed accordingly and implemented at a bridge for the first time. The monitoring system successfully captured the scour process during a storm event and revealed some practical issues for future improvement as well.

Funder

The National Science Foundation of R.O.C

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3