A model-based fatigue damage estimation framework of large-scale structural systems

Author:

Giagopoulos Dimitrios1ORCID,Arailopoulos Alexandros1,Natsiavas Sotirios2

Affiliation:

1. Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece

2. Department of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece

Abstract

A model-based fatigue damage estimation framework is proposed for online estimation of fatigue damage, for structural systems by integrating operational vibration measurements in a high-fidelity, large-scale, finite element (FE) model and applying a fatigue damage accumulation methodology. To proceed with fatigue predictions, one has to infer the stress response time histories characteristics based on the monitoring information contained in vibration measurements collected from a limited number of sensors attached to a structure. Predictions, like the existence, the location, the time, and the extent of the damage, are possible if one combines the information in the measurements with information obtained from a high-fidelity FE model of the structure. Such a model may be optimized with respect to the data, using state-of-the-art FE model updating techniques. These methods provide much more comprehensive information about the condition of the monitored system than the analysis of raw data. The diagnosed degradation state, along with its identified uncertainties, can be incorporated into robust reliability tools for updating predictions of the residual useful lifetime of structural components and safety against various failure modes taking into account stochastic models of future loading characteristics. Fatigue is estimated using the Palmgren–Miner damage rule, S-N curves, and rainflow cycle counting of the variable amplitude time histories of the stress components. Incorporating a numerical model of the structure in the response estimation procedure, permits stress estimation at unmeasured spots. The proposed method is applied in a steel frame of a real city bus.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3