Damage Identification in a Composite Plate using Prestack Reverse-time Migration Technique

Author:

Wang Lei1,Yuan F. G.2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Box 7921, North Carolina State University, Raleigh, NC 27695-7921, USA

2. Department of Mechanical and Aerospace Engineering, Box 7921, North Carolina State University, Raleigh, NC 27695-7921, USA,

Abstract

Migration technique, which is normally used in geophysical prospecting, is proposed to locate and image multiple delamination damages in a laminated composite plate. In this simulation study, an active diagnostic system with a linear array of actuators/sensors is used to excite/receive the lowest mode of flexural waves in the laminate. The wavefield scattered from the damages and sensor array data are synthesized using a two-dimensional explicit finite difference scheme to model wave propagation in the laminate based on the Mindlin plate theory. A prestack reverse-time migration technique is then adopted to interpret the synthetic sensor array data and to visualize the damages. The phase and group velocities of flexural waves in the composite plate are derived from the dispersion relations, and subsequently an excitation-time imaging condition specifically for migration of waves in the plate is introduced based on ray tracing and group velocity. Then the prestack reverse-time migration is performed using the same finite difference scheme to back-propagate the scattered energy to the damages. During the migration process, the laminate is imaged in terms of velocity of the transverse deformation. The locations and dimensions of the damages can be visually displayed. Simulated results demonstrate that multiple delamination damages can be successfully identified and the resulting image correlates well with the target damages.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3