Health monitoring of in-cylinder sensors and fuel injectors using an external accelerometer

Author:

Jeon Woongsun1,Georgiou Anastasis2ORCID,Sun Zongxuan2,Rothamer David A3,Kim Kenneth4,Kweon Chol-Bum4,Rajamani Rajesh2ORCID

Affiliation:

1. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, South Korea

2. Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA

3. Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA

4. DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD, USA

Abstract

This paper focuses on the development of a methodology to monitor the health of an engine by detecting any failures in the fuel injectors or in-cylinder pressure sensors using an accelerometer that is non-intrusively mounted on the engine block. A multi-cylinder engine with each cylinder having its own pressure sensor and injector is considered. First, a model relating the combustion component of the measured acceleration signal to the combustion component of in-cylinder pressure is proposed. Then, gains of the model are tuned to reduce the cycle-to-cycle estimation error by analyzing cycle-to-cycle variations with respect to the combustion pressure peak and engine vibration peak. Using the developed model, cylinder combustion pressures are estimated from engine vibration signals with small cycle-to-cycle estimation errors. Subsequently, a health monitoring system that can detect faults in pressure sensors, fuel injectors, and the accelerometers is proposed based on residues obtained from the difference between estimated combustion pressure and measured pressure signals. The source of the failed component can be identified uniquely by analyzing the pattern of residues. The proposed combustion pressure estimation algorithms are validated by extensive evaluation with experimental data obtained by operating a four-cylinder compression-ignition direct-injection engine with a range of experimental data. Finally, the developed health monitoring system is evaluated with various failure scenarios involving faults in the in-cylinder pressure sensor, fuel injector, and accelerometer.

Funder

Army Research Laboratory

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3