Event classification for natural gas pipeline safety monitoring based on long short-term memory network and Adam algorithm

Author:

An Yang12ORCID,Wang Xiaocen12,Chu Ronghe1,Yue Bin12,Wu Liqun12,Cui Jingjing3,Qu Zhigang12

Affiliation:

1. College of Electronic Information and Automation, Tianjin University of Science & Technology, Tianjin, P.R. China

2. Advanced Structural Integrity International Joint Research Centre, Tianjin University of Science & Technology, Tianjin, P.R. China

3. AVIC Beijing Chang Cheng Aeronautical Measurement and Control Technology Research Institute, Beijing, China

Abstract

Hydrate plugging and pipeline leak can impair the normal operation of natural gas pipeline and may lead to serious accidents. Since natural gas pipeline safety monitoring based on active acoustic excitation can detect and locate not only the two abnormal events but also normal components such as valves and pipeline elbows, recognition and classification of these events are of great importance to provide maintenance guidance for the pipeline operators and avoid false alarm. In this article, long short-term memory (LSTM) network is introduced and applied to classify detection signals of hydrate plugging, pipeline leak, and elbow. Adaptive moment estimation (Adam) algorithm is introduced and utilized to accelerate the long short-term memory network convergence in training. Experimental results demonstrate that the network with three layers and 64 units per cell performs the best. The cross-entropy loss in training is 0.0005, and classification accuracies are all 100% in training, validation, and testing which verify the validity of the long short-term memory network. Therefore, the method based on the long short-term memory network and adaptive moment estimation algorithm can work efficiently on pipeline events classification and has great guiding significance for safety assurance of natural gas transmission.

Funder

National Natural Science Foundation of China

Fundamental scientific research fund project of Tianjin Universities

Civil Aircraft Special Research Project

Humanities, Social Sciences Foundation of the Ministry of Education

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3