Monitoring of environmental loading effect on the steel with different plastic deformation by diffuse ultrasound

Author:

Xie Fan1ORCID,Li Weibin2,Zhang Yuxiang3

Affiliation:

1. Key Laboratory of Seismic Observation and Geophysical Imaging, Institute of Geophysics, China Earthquake Administration, Beijing, China

2. School of Aerospace Engineering, Xiamen University, Xiamen, China

3. LUNAM Université, LAUM, Le Mans Université, Le Mans, France

Abstract

Diffuse ultrasound is highly sensitive to changes in mechanical properties. Based on the coda wave interferometry analysis, we investigate the environmental temperature-induced wave velocity variations in high-manganese steels with plastic deformations by diffuse ultrasound. We observe the velocity changes in the materials at test with [Formula: see text] relative resolution. We propose the temperature-dependent coefficient as the key parameter for damage assessment in the specimens with different plastic deformations. The results show that the early-stage damage caused by plastic deformation in the specimens at test varying from 6% to 14% are successfully characterized by temperature-dependent coefficients in the absence of external mechanical load. The theoretical analysis on the sensitivity of the temperature-dependent coefficient to plastic deformation as well as the potential on-site application is discussed in this article.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3