Bolt-loosening Fault Diagnosis in Rotor Systems with Nonlinear Vibration Transmissibility Function-based Features and Indexes

Author:

Li Quankun1ORCID,Zhao Qingzhou1,Wang Siji1,Jing Xingjian2

Affiliation:

1. School of Power and Energy, Northwestern Polytechnical University, Xi’an, Shaanxi, China

2. Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China

Abstract

These methods that rely on features and indices derived from nonlinear vibration transmissibility functions (NVTFs) have found widespread success in detecting potential bolt-loosening faults within nonrotating systems such as bridges, railways, and satellites. To improve and extend existing NVTF-based methods for diagnosing bolt-loosening faults in rotor systems, a novel method is proposed with detailed theoretical analysis and experimental study in this paper. First, a general rotor dynamic model, considering bolt-loosening forces, radial unbalance forces, and nonlinear support forces, is built for the nonlinear rotor dynamic analysis and the definition of rotor-domain NVTFs. Importantly, by dividing the rotor system into a series of rotor subsystems and analyzing corresponding rotor dynamic submodels to be diagnosed only, relationships between NVTFs and bolt-loosening forces are summarized, and then three sensitive fault features are defined. Based on this, local diagnosis indexes are developed, and a novel method with detailed operating flowchart is proposed accordingly. Finally, results from experimental cases on a testing rotor system with single/multiple stage bolt-loosening faults and loosened pedestals verify and demonstrate the effectiveness of the novel method. The study in this article successfully improves and extends existing NVTF-based methods for nonrotating systems to diagnose potential bolt-loosening faults in rotor systems even with nonlinear supports such as loosened pedestals.

Funder

National Natural Science Foundation of China

Innovation Capability Support Program of Shaanxi

Natural Science Basic Research Plan of Shaanxi

China Scholarship Council

National Key Research and Development Program of China

City University of Hong Kong

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3