Affiliation:
1. Department of Mechanical Engineering, Inha University, Incheon, Korea
Abstract
In the previous work, the cyclostationarity process, which is one of signal processing methods, has been used in health monitoring of the rotating machinery because of the superior detecting property of hidden periodicity. However, it is often difficult to acquire the information about the hidden periodicity due to the fault of the rotating machinery when the impact signal is low. Therefore, a certain preprocessing tool to extract the information about the impact signal due to the fault is required. This article presents the new detection process of tooth faults in a gearbox system based on the empirical mode decomposition algorithm which adaptively decomposes the signal into a set of intrinsic mode functions and the cyclostationarity process which identifies the hidden periodicity clearly in bi-frequency domain. The proposed method was demonstrated with a simulated signal and was applied to the detection of four types of conditions of tooth fault successfully.
Funder
National Research Foundation of Korea
Subject
Mechanical Engineering,Biophysics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献