Identification of tooth fault in a gearbox based on cyclostationarity and empirical mode decomposition

Author:

Kim Jong-Sik1,Lee Sang-Kwon1

Affiliation:

1. Department of Mechanical Engineering, Inha University, Incheon, Korea

Abstract

In the previous work, the cyclostationarity process, which is one of signal processing methods, has been used in health monitoring of the rotating machinery because of the superior detecting property of hidden periodicity. However, it is often difficult to acquire the information about the hidden periodicity due to the fault of the rotating machinery when the impact signal is low. Therefore, a certain preprocessing tool to extract the information about the impact signal due to the fault is required. This article presents the new detection process of tooth faults in a gearbox system based on the empirical mode decomposition algorithm which adaptively decomposes the signal into a set of intrinsic mode functions and the cyclostationarity process which identifies the hidden periodicity clearly in bi-frequency domain. The proposed method was demonstrated with a simulated signal and was applied to the detection of four types of conditions of tooth fault successfully.

Funder

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3