Incremental learning BiLSTM based on dynamic proportional adjustment mechanism and experience replay for quantitative detection of blade crack propagation

Author:

Shen Junxian1ORCID,Ma Tianchi1ORCID,Song Di1,Xu Feiyun1ORCID

Affiliation:

1. School of Mechanical Engineering, Southeast University, Nanjing, PR China

Abstract

In the traditional quantitative detection model for blade cracks in centrifugal fan, it is assumed that the data distribution is fixed or stable. However, the new data brought by the crack propagation would break the stable distribution, thereby disturbing the old data, and resulting in a decrease in the detection performance of the model. To overcome catastrophic forgetting and reduce the extra computational cost of retaining intact old data, a quantitative detection method based on incremental learning bidirectional long short-term memory (BiLSTM) with dynamic proportional adjustment mechanism and experience replay for blade crack propagation is proposed. First, a basic BiLSTM model is constructed by inputting the data of cracks with a length of 0–5 mm. Second, the fully connected layer features in the model are selected for t-distributed stochastic neighbor embedding (t-SNE) dimensional reduction, and the Kullback–Leibler divergence is used as an indicator of feature distribution evaluating the representative old data. Third, a dynamic proportional adjustment mechanism for the old data retention proportion is constructed according to the feature distribution index and the model detection accuracy. Finally, the data of the crack with a length of 6–10 mm are gradually input to proceed with the incremental learning of the model. Verified by the measured data of the centrifugal fan, the model can adjust the retained number of old crack length data dynamically, and import new crack length data for incremental learning, making it characterized by high detection accuracy, stability, and plasticity for the quantitative detection of crack length propagation in blades.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3