Looseness condition feature extraction of viscoelastic sandwich structure using dual-tree complex wavelet packet-based deep autoencoder network

Author:

Si Yue1ORCID,Zhang Zhousuo2,Kong Chuiqing3,Li Shujuan1,Yang Guigeng1,Hu Bingbing1

Affiliation:

1. School of Mechanical and Instrumental Engineering, Xi’an University of Technology, Xi’an, P.R. China

2. State Key Laboratory for Manufacturing and Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, P.R. China

3. China National Heavy Machinery Research Institute Co., Ltd., Xi’an, P.R. China

Abstract

It is significant to perform looseness condition detection of viscoelastic sandwich structures to avoid serious accidents. Due to the multilayer characteristic of the viscoelastic sandwich structure, the vibration response signal of such structures is nonlinear and nonstationary. Furthermore, the looseness condition feature signal contained in the vibration response signal is very puny. Condition feature extraction has become a challenging task in the looseness condition detection of viscoelastic sandwich structures. Therefore, a novel method called dual-tree complex wavelet packet-based deep autoencoder network is proposed for this task. First, the vibration response signal of the viscoelastic sandwich structure is decomposed by dual-tree complex wavelet packet transform and the sub-band signals which contain rich energy are extracted. Then, the energies of the extracted sub-band signals are calculated to form a feature set. Finally, a deep autoencoder network is established to fuse the feature set, and the fused feature is viewed as the detection index to detect the looseness condition of the viscoelastic sandwich structure. The proposed method is applied to the connecting bolt looseness condition detection of the viscoelastic sandwich structure to validate its effectiveness. Compared with the detection method based on dual-tree complex wavelet packet transform and energy and the detection method based on dual-tree complex wavelet packet transform and permutation entropy, the results indicate that the effectiveness of the proposed method in this article is more superior to that of the other two methods.

Funder

National Natural Science Foundation of China

science challenge project

china postdoctoral science foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3