A three-stage online anomaly identification model for monitoring data in dams

Author:

Xu Ying12,Huang Huibao3,Li Yanling12ORCID,Zhou Jingren12,Lu Xiang12,Wang Yongfei123

Affiliation:

1. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China

2. College of Hydraulic and Hydroelectric Engineering, Sichuan University, Chengdu, China

3. Dam Management Center of Dadu River Hydropower Development Co., LTD, Chengdu, China

Abstract

The monitoring of data anomaly identification is an important basis for dam safety online monitoring and evaluation. In this research, a cluster of anomaly identification models for dam safety monitoring data was constructed, and a three-stage online anomaly identification method was proposed to discriminate outliers. The proposed method combined anomaly detection for measured values based on a single-point time series simulation, measurement error reduction based on remote retesting and spatio-temporal analysis, and environmental response mutation recognition. It brought about efficient and accurate detection for data mutation and online classified identification for its inducement. Additionally, problems such as missing outliers, misjudging normal values induced by the environmental response, and difficulty in online identification for measurement errors were effectively solved. The research productions were applied to the online monitoring system for the safety risk of reservoirs and dams in the Dadu River Basin. The results showed that the proposed method could effectively improve the accuracy of anomaly identification and reduce the misjudgment and omission rate to less than 2%. It could also successfully recognize and subtract nonstructural anomalies such as accidental errors, instrument faults, and environmental responses online, which provided reliable data for online dam safety monitoring.

Funder

The National Key R&D Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3