Impact localization in composite structures of arbitrary cross section

Author:

Ciampa Francesco1,Meo Michele1,Barbieri Ettore2

Affiliation:

1. University of Bath, UK

2. University of Oxford, UK

Abstract

This article proposes an in situ structural health monitoring method able to locate the impact source and to determine the flexural Lamb mode A0 velocity in composite structures with unknown lay-up and cross section. The algorithm is based on the differences of the stress waves measured by six surface-attached acoustic emission piezoelectric (lead zirconate titanate) sensors and is branched off into two steps. In the first step, the magnitude of the squared modulus of continuous wavelet transform, which guarantees high accuracy in the time–frequency analysis of the acoustic waves, was used to identify the time of arrival of the flexural Lamb wave. Then, the coordinates of the impact location and the group speed values are obtained by solving a set of non-linear equations through a combination of local Newton’s iterative method associated with line search and polynomial backtracking techniques. The proposed method, in contrast to the current impact localization algorithms, does not require a priori knowledge of the anisotropy angular-group velocity pattern of the measured waveforms as well as the mechanical properties of the structure. To validate this method, experimental location testing was conducted on two different composite structures: a quasi-isotropic carbon fibre–reinforced plastic laminate and a sandwich panel. The results showed that source location was achieved with satisfactory accuracy (maximum error in estimation of the impact location was approximately 3 mm for quasi-isotropic carbon fibre–reinforced plastic panel and nearly 2 mm for sandwich plate), requiring little computational time (nearly 1 s). In addition, the values of the fundamental flexural Lamb mode A0 obtained from the optimization algorithm were compared with those determined by a numerical spectral finite element method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3