Time history analysis-based nonlinear finite element model updating for a long-span cable-stayed bridge

Author:

Lin Kaiqi12ORCID,Xu You-Lin1ORCID,Lu Xinzheng3,Guan Zhongguo4,Li Jianzhong4

Affiliation:

1. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong

2. College of Civil Engineering, Fuzhou University, Fuzhou, China

3. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University, Beijing, China

4. Department of Bridge Engineering, Tongji University, Shanghai, China

Abstract

Accurate finite element models play significant roles in the design, health monitoring and life-cycle maintenance of long-span bridges. However, due to uncertainties involved in finite element modelling, updating of the finite element model to best represent the real bridge is inevitable. This is particularly true after a long-span bridge experiences a moderate or severe earthquake and suffers some damage. This study thus proposes a time history analysis-based nonlinear finite element model updating method for long-span cable-stayed bridges. Special efforts are made to (1) establish the response time history-based objective functions and associated acceptance criteria, (2) conduct comprehensive sensitivity analyses to select appropriate nonlinear updating parameters and (3) develop a highly efficient cluster computing-aided optimization algorithm. A scaled structure of the Sutong cable-stayed bridge in China is adopted as a case study. Three nonlinear test cases performed in the shake table tests of the scaled bridge are used to validate the feasibility and accuracy of the proposed method. A good agreement is observed between the simulated response time histories and the measured response time histories for the scaled bridge under both moderate and strong ground motions. The proposed method could provide an accurate nonlinear finite element model for better performance assessment, damage detection and life-cycle maintenance of long-span cable-stayed bridges.

Funder

The Hong Kong Polytechnic University

national natural science foundation of china

Research Grants Council of Hong Kong

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3