A full-scale wind turbine blade monitoring campaign: detection of damage initiation and progression using medium-frequency active vibrations

Author:

Fremmelev Mads Anker12ORCID,Ladpli Purim1,Orlowitz Esben3,Dervilis Nikolaos4,McGugan Malcolm2ORCID,Branner Kim2

Affiliation:

1. Siemens Gamesa Renewable Energy, Blade Submodules Technology, Aalborg East, Denmark

2. Department of Wind and Energy Systems, Technical University of Denmark, Roskilde, Denmark

3. Siemens Gamesa Renewable Energy, Turbine Measurement Operation, Brande, Denmark

4. Department of Mechanical Engineering, Dynamics Research Group, University of Sheffield, Sheffield, United Kingdom

Abstract

This work is concerned with a structural health monitoring campaign of a 52-m wind turbine blade. Multiple artificial damages are introduced in the blade sequentially, and fatigue testing is conducted with each damage in sequence. Progressive fatigue-driven damage propagation is achieved, enabling investigations concerning detection of initiation and propagation of damage in the blade. Using distributed accelerometers, operational modal analysis is performed to extract the lower-order natural vibration modes of the blade, which are shown to not be sensitive to small damages in the blade. To enable monitoring of small damages, an active vibration monitoring system is used, comprised of an electrodynamic vibration shaker and distributed accelerometers. From the accelerometer data, frequency domain methods are used to extract features. Using the extracted features, outlier detection is performed to investigate changes in the measurements resulting from the introduced damages. Capabilities of using features based on the active vibration data for detection of initiation and progression of damage in a wind turbine blade during fatigue testing are investigated, showing good correlation between the observed damage progression and the calculated changes in the damage index.

Funder

Innovationsfonden

Energiteknologisk udviklings- og demonstrationsprogram

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3