Structural rotor rub-impact diagnosis under intricate noise interferences based on targeted component extraction and stochastic resonance enhancement

Author:

Hou Yaochun1,Wang Huan1,Wang Yuxuan1,Wu Peng1,Huang Wenjun2,Wu Dazhuan1ORCID

Affiliation:

1. Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, China

2. College of Control Science and Engineering, Zhejiang University, Hangzhou, China

Abstract

Rub-impact is a common nonlinear fault of the rotor system, occurring in rotating machines with radial clearance between the rotor and the stator, which may lead to serious consequences. Since the vibration response of rotor rub-impact is shown as multicomponent with time-varying characteristics of undulatory instantaneous frequency, it is desired to exploit advanced signal processing methods for rub-related feature excavation and failure diagnosis under complex noise interferences, which is of crucial significance to ensure the stable and efficient operation of the whole unit. This paper concerns the processing of acceleration signals and proposes a novel intrawave frequency modulation detection approach for structural rotor rubbing diagnosis based upon targeted component extraction and stochastic resonance enhancement. First, the acquired vibratory acceleration signal is converted into displacement signal via a two-stage integration strategy. Next, to extract the rotating frequency component of high information clarity for further time–frequency analysis from the multicomponent signal, an especially designed improved variational mode decomposition method based on the modified target frequency index is put forward, and the instantaneous frequency of the objective component is estimated. Then, the optimum stochastic resonance is leveraged for intrawave frequency modulation enhancement. Finally, the rotor rub-related symptom can be distinctly revealed and the diagnostic procedure can be performed. The effectiveness and superiority of the proposed rotor rub-impact diagnosis approach are demonstrated through both simulations and experiments, indicating that it is suitable to be implemented in practical applications, with high noise-resistance ability, and can efficiently extract the potential characteristics of rotor rub-impact malfunction from multicomponent signals.

Funder

Key Research and Development Program of Zhejiang Province

Eyas Program Incubation Project of Zhejiang Provincial Administration for Market Regulation

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3