Guided wave tomography based on least-squares reverse-time migration

Author:

He Jiaze1ORCID,Rocha Daniel C2,Sava Paul2

Affiliation:

1. Department of Aerospace Engineering and Mechanics, The University of Alabama, Tuscaloosa, AL, USA

2. Center for Wave Phenomena, Colorado School of Mines, Golden, CO, USA

Abstract

A key to successful damage diagnostics and quantification is damage imaging through ultrasonic guided wave tomography. We propose the implementation of least-squares reverse-time migration in a circular array for damage imaging in an aluminum plate. The theory of least-squares reverse-time migration is formulated for guided wave applications along with the summary of an efficient optimization algorithm: the conjugate gradient method. Numerical simulation and laboratory experiments are used to evaluate its performance with a circular array setup. In order to improve the data processing efficiency, the concept of using a limited number of actuators but a relatively large number of sensors is tested. Studies are conducted on three numerical cases, including a rectangular-shaped damage site, a complex-shaped damage site, and six other damage sites varying in size. As an inversion-based method, least-squares reverse-time migration shows significantly improved shape reconstruction with the amplitude quantification capability, compared to conventional reverse-time migration. Our experimental data are generated by piezoelectric wafers as actuators, measured by a scanning laser Doppler vibrometer to form a circular array on an aluminum plate, with a rectangular notch located in the inner region of the array. The damage images using experimental data show consistency in both the simulations using Born scattering and in altered material properties in the damaged region. According to the comparison, least-squares reverse-time migration for guided wave tomography is a promising technology to provide high-resolution large area damage imaging for plate-like structures.

Funder

NASA’s Convergent Aeronautics Solutions: Digital Twin project

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3