A baseline-free method for damage identification in pipes from local vibration mode pair frequencies

Author:

Esu Obukho E1ORCID,Wang Ying12ORCID,Chryssanthopoulos Marios K1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Surrey, Guildford, Surrey, UK

2. School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, China

Abstract

As structural systems approach their end of service life, integrity assessment and condition monitoring during late life becomes necessary in order to identify damage due to age-related issues such as corrosion and fatigue and hence prevent failure. In this paper, a novel method of level 3 damage identification (i.e. detection, localisation and quantification) from local vibration mode pair (LVMP) frequencies is introduced. Detection is achieved by observation of LVMP frequencies within any of the vibration modes investigated while the location of the damage is predicted based on the ranking order of the LVMP frequency ratios and the damage is quantified in terms of material volume loss from pre-established quantification relations. The proposed method which is baseline-free (in the sense that it does not require vibration-based assessment or modal data from the undamaged state of the pipe) and solely frequency-dependent was found to be more than 90% accurate in detecting, locating and quantifying damage through a numerical verification study. It was also successfully assessed using experimental modal data obtained from laboratory tests performed on an aluminium pipe with artificially inflicted corrosion-like damage underscoring a novel concept in vibration-based damage identification for pipes.

Funder

Niger Delta Development Commission of the Federal Republic of Nigeria

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Reference39 articles.

1. Sohn H, Farrar CR, Hemez FM, et al. A review of structural health review of structural health monitoring literature 1996-2001. In: Proceedings of the 3rd world conference on structural control, Como, Italy, USA, 2002. Los Alamos National Laboratory, p. 301.

2. Structural health monitoring: Closing the gap between research and industrial deployment

3. Damage detection from changes in curvature mode shapes

4. The location of defects in structures from measurements of natural frequencies

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3